期刊论文详细信息
Electronic Transactions on Numerical Analysis
Monte Carlo estimators for the Schatten p-norm of symmetric positive semidefinite matrices
article
Ethan Dudley1  Arvind K. Saibaba1  Alen Alexanderian1 
[1] Department of Mathematics, North Carolina State University;Department of Mathematics, University of Maryland, College Park
关键词: Schatten $p$-norm;    Monte Carlo estimator;    optimal experimental design;    Chebyshev polynomials.;   
DOI  :  10.1553/etna_vol55s213
学科分类:数学(综合)
来源: Kent State University * Institute of Computational Mathematics
PDF
【 摘 要 】

We present numerical methods for computing the Schatten $p$-norm of positive semi-definite matrices. Our motivation stems from uncertainty quantification and optimal experimental design for inverse problems, where the Schatten $p$-norm defines a measure of uncertainty. Computing the Schatten $p$-norm of high-dimensional matrices is computationally expensive. We propose a matrix-free method to estimate the Schatten $p$-norm using a Monte Carlo estimator and derive convergence results and error estimates for the estimator. To efficiently compute the Schatten $p$-norm for non-integer and large values of $p$, we use an estimator using Chebyshev polynomial approximations and extend our convergence and error analysis to this setting as well. We demonstrate the performance of our proposed estimators on several test matrices and in an application to optimal experimental design for a model inverse problem.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307010000582ZK.pdf 2423KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:2次