Ordering and fluctuation of orbital and lattice distortion in perovskite manganese oxides | |
Article | |
关键词: TRANSITION-METAL OXIDES; HUBBARD-STRATONOVICH TRANSFORMATION; DOUBLE-EXCHANGE FERROMAGNET; X-RAY-SCATTERING; ELECTRONIC-STRUCTURE; PHASE-DIAGRAM; COLOSSAL MAGNETORESISTANCE; INSULATOR-TRANSITION; NUMERICAL-SIMULATION; OPTICAL-ABSORPTION; | |
DOI : 10.1103/PhysRevB.60.7921 | |
来源: SCIE |
【 摘 要 】
Roles of orbital and lattice degrees of freedom in strongly correlated systems are investigated to understand electronic properties of perovskite Mn oxides such as La1-xSrxMnO3. An extended double-exchange model containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller coupling is derived under full polarization of spins with two-dimensional anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital degrees of freedom are investigated by using the quantum Monte Carlo method. In undoped states, it is crucial to consider both the Coulomb interaction and the Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales among charge, orbital-lattice, and spin degrees of freedom in experiments. Our numerical results quantitatively reproduce the charge gap amplitude as well as the stabilization energy and the amplitude of the cooperative Jahn-Teller distortion in undoped compounds. Upon doping of carriers, in the absence of the Jahn-Teller distortion, critical enhancement of both charge compressibility and orbital correlation length is found with decreasing doping concentration. These are discussed as origins of strong incoherence in charge dynamics. With the Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller distortion and instability to phase separation are obtained and favorably compared with experiments. These provide a possible way to understand the complicated properties of lightly doped manganites.
【 授权许可】
Free