期刊论文详细信息
Quantitatively analyzing phonon spectral contribution of thermal conductivity based on nonequilibrium molecular dynamics simulations. I. From space Fourier transform
Article
关键词: LATTICE-DYNAMICS;    HEAT;    TRANSPORT;    SILICON;    NANOSTRUCTURES;    SCATTERING;    CRYSTALS;   
DOI  :  10.1103/PhysRevB.92.195204
来源: SCIE
【 摘 要 】

Probing detailed spectral dependence of phonon transport properties in bulk materials is critical to improve the function and performance of structures and devices in a diverse spectrum of technologies. Currently, such information can only be provided by the phonon spectral energy density (SED) or equivalently, time domain normal mode analysis (TDNMA) methods in the framework of equilibrium molecular dynamics simulations (EMD), but has not been realized in nonequilibrium molecular dynamics simulations (NEMD) so far. In this paper we generate a scheme directly based on NEMD and lattice dynamics theory, called the time domain direct decomposition method (TDDDM), to predict the phonon mode specific thermal conductivity. Two benchmark cases of Lennard-Jones (LJ) argon and Stillinger-Weber (SW) Si are studied by TDDDM to characterize contributions of individual phonon modes to overall thermal conductivity and the results are compared with that predicted using SED and TDNMA. Similar trends are found for both cases, which indicate that our TDDDM approach captures the major phonon properties in NEMD run. The biggest advantage of TDDDM is that it can be used to investigate the size effect of individual phonon modes in NEMD simulations, which cannot be tackled by SED and TDNMA in EMD simulations currently. We found that the phonon modes with mean free path larger than the system size are truncated in NEMD and contribute little to the overall thermal conductivity. The TDDDM provides direct physical origin for the well-known strong size effects in thermal conductivity prediction by NEMD. Moreover, the well-known common sense of the zero thermal conductivity contribution from the Gamma point is rigorously proved by TDDDM. Since TDDDM inherently possesses the nature of both NEMD simulations and lattice dynamics, we anticipate that TDDDM is particularly useful for offering a deep understanding of phonon behaviors in nanostructures or under strong confinement, especially when the structure size is significantly smaller than the characteristic mean free path of the dominant phonons.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次