期刊论文详细信息
Randomly dilute spin models: A six-loop field-theoretic study
Article
关键词: CRITICAL DISORDERED-SYSTEMS;    RANDOM ISING SYSTEM;    HIGH-MAGNETIC CONCENTRATION;    REPLICA-SYMMETRY-BREAKING;    CALLAN-SYMANZIK EQUATION;    MONTE-CARLO SIMULATION;    N-VECTOR MODEL;    CRITICAL-BEHAVIOR;    CRITICAL EXPONENTS;    RENORMALIZATION-GROUP;   
DOI  :  10.1103/PhysRevB.62.6393
来源: SCIE
【 摘 要 】

We consider the Ginzburg-Landau MN model that describes M N-vector cubic models with O(M)-symmetric couplings. We compute the renormalization-group functions to six-loop order in d=3. We focus on the limit N->O which describes the critical behavior of an M-vector model in the presence of weak quenched disorder. We perform for the critical exponents: y=1.330(17), v=0.678(10), eta = 0.030(3), alpha = -0.034(30), Beta = 0.349(5), omega = 0.25(10). For M greater than or equal to 2 we show that the O(M) fixed point is stable, in agreement with general nonperturbative arguments, and that no random fixed point exists.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:6次