期刊论文详细信息
Quantitative determination of interlayer electronic coupling at various critical points in bilayer MoS2
Article
关键词: TOTAL-ENERGY CALCULATIONS;    MOLYBDENUM-DISULFIDE;    DIRAC FERMIONS;    WAALS;    MONOLAYER;    SUPERCONDUCTIVITY;    EXCITONS;   
DOI  :  10.1103/PhysRevB.106.125302
来源: SCIE
【 摘 要 】

Tailoring interlayer coupling has emerged as a powerful tool to tune the electronic structure of van der Waals (vdW) bilayers. One example is the usage of the moire patternto create controllable two-dimensional electronic superlattices through the configurational dependence of interlayer electronic couplings. This approach has led to some remarkable discoveries in twisted graphene bilayers, and transition metal dichalcogenide homo-and heterobilayers. However, a largely unexplored factor is the interlayer distance d, which can impact the interlayer coupling strength exponentially. In this paper, we quantitatively determine the coupling strengths as a function of interlayer spacing at various critical points of the Brillouin zone in bilayer MoS2. The exponential dependence of the coupling parameter on the gap distance is demonstrated. Most significantly, we achieved a 280% enhancement of K-valley coupling strength with an 8% reduction of the vdW gap, pointing to a strategy for designing a unique electronic system in vdW bilayers.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次