期刊论文详细信息
Functional renormalization group approach to SU(N) Heisenberg models: Momentum-space renormalization group for the large-N limit
Article
关键词: SQUARE LATTICE;    GROUP FLOWS;    PHASES;   
DOI  :  10.1103/PhysRevB.97.064416
来源: SCIE
【 摘 要 】

In frustrated magnetism, making a stringent connection between microscopic spin models and macroscopic properties of spin liquids remains an important challenge. A recent step towards this goal has been the development of the pseudofermion functional renormalization group approach (pf-FRG) which, building on a fermionic parton construction, enables the numerical detection of the onset of spin liquid states as temperature is lowered. In this work, focusing on the SU(N) Heisenberg model at large N, we extend this approach in a way that allows us to directly enter the low-temperature spin liquid phase, and to probe its character. Our approach proceeds in momentum space, making it possible to keep the truncation minimalistic, while also avoiding the bias introduced by an explicit decoupling of the fermionic parton interactions into a given channel. We benchmark our findings against exact mean-field results in the large-N limit, and show that even without prior knowledge the pf-FRG approach identifies the correct mean-field decoupling channel. On a technical level, we introduce an alternative finite temperature regularization scheme that is necessitated to access the spin liquid ordered phase. In a companion paper [Buessen et al., Phys. Rev. B 97, 064415 (2018)] we present a different set of modifications of the pf-FRG scheme that allow us to study SU(N) Heisenberg models (using a real-space RG approach) for arbitrary values of N, albeit only up to the phase transition towards spin liquid physics.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次