期刊论文详细信息
Dynamical mean-field theory versus second-order perturbation theory for the trapped two-dimensional Hubbard antiferromagnet
Article
关键词: BOSE-EINSTEIN CONDENSATION;    INFINITE DIMENSIONS;    OPTICAL LATTICES;    ULTRACOLD ATOMS;    MOTT INSULATOR;    MODEL;    FERMIONS;    GAS;   
DOI  :  10.1103/PhysRevB.84.155129
来源: SCIE
【 摘 要 】

In recent literature on trapped ultracold atomic gases, calculations for two-dimensional (2D) systems are often done within the dynamical mean-field theory (DMFT) approximation. In this paper, we compare DMFT to a fully 2D, self-consistent second-order perturbation theory for weak interactions in a repulsive Fermi-Hubbard model. We investigate the role of quantum and of spatial fluctuations when the system is in the antiferromagnetic phase, and find that, while quantum fluctuations decrease drastically the order parameter and critical temperatures, spatial fluctuations only play a noticeable role when the system undergoes a phase transition, or at phase boundaries in the trap. We conclude from this that DMFT is a good approximation for the antiferromagnetic Fermi-Hubbard model for experimentally relevant system sizes.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次