Time-dependent approach to inelastic scattering spectroscopies in and away from equilibrium: Beyond perturbation theory | |
Article | |
关键词: MONTE-CARLO; ANALYTIC CONTINUATION; MAXIMUM-ENTROPY; SPIN DYNAMICS; EXCITATIONS; | |
DOI : 10.1103/PhysRevB.102.235141 | |
来源: SCIE |
【 摘 要 】
We propose a nonperturbative numerical approach to calculate the spectrum of a many-body Hamiltonian with time and momentum resolution by exactly recreating a scattering event using the time-dependent Schrodinger equation. Akin to an actual inelastic scattering experiment, we explicitly account for the incident and scattered particles (e.g., photons, neutrons, electrons, etc.) in the Hamiltonian and obtain the spectrum by measuring the energy and momentum lost by the particle after interacting with the sample. We illustrate the method by calculating the spin excitations of a Mott-insulating Hubbard chain after a sudden quench with the aid of the time-dependent density matrix renormalization group method. Our formalism can be applied to different forms of spectroscopies, such as neutron and Compton scattering and electron-energy-loss spectroscopy, for instance.
【 授权许可】
Free