期刊论文详细信息
Effect of chirality imbalance on Hall transport of PrRhC2
Article
关键词: MAGNETOCRYSTALLINE ANISOTROPY;    WEYL;    SEMIMETAL;   
DOI  :  10.1103/PhysRevB.107.L081110
来源: SCIE
【 摘 要 】

Much has been learned about the topological transport in real materials. We investigate the interplay between magnetism and topology in the magnetotransport of PrRhC2. The fourfold degeneracy reduces to twofold followed by nondegenerate Weyl nodes when the orientation of the magnetic quantization axis is changed from easy axis to body diagonal through face diagonal. This engenders chirality imbalance between positive and negative chirality Weyl nodes around the Fermi energy. We observe a significant enhancement in the chiral anomaly mediated response such as planar Hall conductivity and longitudinal magnetoconductivity, due to the emergence of chirality imbalance upon orienting the magnetic quantization axis to body diagonal. The angular variations of the above quantities for different magnetic quantization axes clearly refer to the typical signature of planar Hall effect in Weyl semimetals. We further investigate the profiles of anomalous Hall conductivities as a function of Fermi energy to explore the effects of symmetries as well as chirality imbalance on Berry curvature.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次