期刊论文详细信息
Coherent electron transport by adiabatic passage in an imperfect donor chain
Article
关键词: NEMO 3-D;    QUANTUM;    ATOM;    SPECTROSCOPY;   
DOI  :  10.1103/PhysRevB.82.155315
来源: SCIE
【 摘 要 】

Coherent tunneling adiabatic passage (CTAP) has been proposed as a long-range physical quantum bits (qubit) transport mechanism in solid-state quantum computing architectures. Although the mechanism can be implemented in either a chain of quantum dots or donors, a one-dimensional chain of donors in Si is of particular interest due to the natural confining potential of donors that can, in principle, help reduce the gate densities in solid-state quantum computing architectures. Using detailed atomistic modeling, we investigate CTAP in a more realistic triple donor system in the presence of inevitable fabrication imperfections. In particular, we investigate how an adiabatic pathway for CTAP is affected by donor misplacements and propose schemes to correct for such errors. We also investigate the sensitivity of the adiabatic path to gate voltage fluctuations. The tight-binding based atomistic treatment of straggle used here may benefit understanding of other donor nanostructures, such as donor-based charge and spin qubits. Finally, we derive an effective 3 X 3 model of CTAP that accurately resembles the voltage tuned lowest energy states of the multimillion atom tight-binding simulations and provides a translation between intensive atomistic Hamiltonians and simplified effective Hamiltonians while retaining the relevant atomic-scale information. This method can help characterize multidonor experimental structures quickly and accurately even in the presence of imperfections, overcoming some of the numeric intractabilities of finding optimal eigenstates for nonideal donor placements.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次