Spin drift-diffusion for two-subband quantum wells | |
Article | |
关键词: 2-DIMENSIONAL ELECTRON; TRANSPORT; SPINTRONICS; COHERENCE; GAS; | |
DOI : 10.1103/PhysRevB.103.165304 | |
来源: SCIE |
【 摘 要 】
Controlling the spin dynamics and spin lifetimes is one of the main challenges in spintronics. To this end, the study of the spin diffusion in two-dimensional electron gases (2DEGs) shows that when the Rashba and Dresselhaus spin-orbit couplings (SOC) are balanced, a persistent spin helix regime arises. There, a striped spin pattern shows a long lifetime, limited only by the cubic Dresselhaus SOC, and its dynamics can be controlled by in-plane drift fields. Here, we derive a spin-diffusion equation for nondegenerate two-subband 2DEGs. We show that the intersubband scattering rate, which is defined by the overlap of the subband densities, enters as a new nob to control the spin dynamics, and can be controlled by electric fields, being maximum for symmetric quantum wells. We find that for large intersubband couplings the dynamics follows an effective diffusion matrix given by approximately half of the subband-averaged matrices. This extra 1/2 factor arises from Matthiessen's rule summing over the intrasubband and intersubband scattering rates, and leads to a reduced diffusion constant and larger spin lifetimes. We illustrate our findings with numerical solutions of the diffusion equation with parameters extracted from realistic Schrodinger-Poisson calculations.
【 授权许可】
Free