Variational wave functions for the S=1/2 Heisenberg model on the anisotropic triangular lattice: Spin liquids and spiral orders | |
Article | |
关键词: ANTIFERROMAGNET CS2CUBR4; GROUND-STATE; MONTE-CARLO; PHASES; | |
DOI : 10.1103/PhysRevB.93.085111 | |
来源: SCIE |
【 摘 要 】
By using variational wave functions and quantum Monte Carlo techniques, we investigate the complete phase diagram of the Heisenberg model on the anisotropic triangular lattice, where two out of three bonds have superexchange couplings J and the third one has instead J'. This model interpolates between the square lattice and the isotropic triangular one, for J'/J <= 1, and between the isotropic triangular lattice and a set of decoupled chains, for J/J' <= 1. We consider all the fully symmetric spin liquids that can be constructed with the fermionic projective-symmetry group classification (Zhou and Wen, arXiv:cond-mat/0210662) and we compare them with the spiral magnetic orders that can be accommodated on finite clusters. Our results show that, for J'/J <= 1, the phase diagram is dominated by magnetic orderings, even though a spin- liquid state may be possible in a small parameter window, i.e., 0.7 less than or similar to J'/J <= 0.8. In contrast, for J/J' <= 1, a large spin-liquid region appears close to the limit of decoupled chains, i.e., for J/J' less than or similar to 0.6, while magnetically ordered phases with spiral order are stabilized close to the isotropic point.
【 授权许可】
Free