期刊论文详细信息
Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors
Article
关键词: DENSITY-WAVE;    STATE;    PHASE;    ELECTRODYNAMICS;    MOMENTS;    MATTER;    MODEL;   
DOI  :  10.1103/PhysRevB.98.165110
来源: SCIE
【 摘 要 】

Four types of atomic-scale multipoles (electric, magnetic, magnetic toroidal, and electric toroidal multipoles) give a complete set to describe arbitrary degrees of freedom for coupled charge, spin, and orbital of electrons. We here present a systematic classification of these multipole degrees of freedom towards the application in condensed matter physics. Starting from the multipole description under the rotation group in real space, we generalize the concept of multipoles in momentum space with the spin degree of freedom. We show how multipoles affect the electronic band structure and linear responses, such as the magnetoelectric effect, magnetocurrent (magnetogyrotropic) effect, spin conductivity, piezoelectric effect, and so on. Moreover, we exhibit a complete table to represent the active multipoles under 32 crystallographic point groups. Our comprehensive and systematic analyses will give a foundation to identify enigmatic electronic order parameters and a guide to evaluate peculiar cross-correlated phenomena in condensed matter physics from the microscopic point of view.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:3次