期刊论文详细信息
Designing nonequilibrium states of quantum matter through stochastic resetting
Article
关键词: STATISTICAL-MECHANICS;    XY-MODEL;   
DOI  :  10.1103/PhysRevB.104.L180302
来源: SCIE
【 摘 要 】

We consider closed quantum many-body systems subject to stochastic resetting. This means that their unitary time evolution is interrupted by resets at randomly selected times. When a reset takes place, the system is reinitialized to a state chosen from a set of reset states conditionally on the outcome of a measurement taken immediately before resetting. We construct analytically the resulting nonequilibrium stationary state, thereby establishing an explicit connection between quantum quenches in closed systems and the emergent open system dynamics induced by stochastic resetting. We discuss as an application the paradigmatic transverse-field quantum Ising chain. We show that signatures of its ground-state quantum phase transition are visible in the steady state of the reset dynamics as a sharp crossover. Our findings show that a controlled stochastic resetting dynamics allows one to design nonequilibrium stationary states of quantum many-body systems, where uncontrolled dissipation and heating can be prevented. These states can thus be created on demand and exploited, e.g., as a resource for quantum enhanced sensing on quantum simulator platforms.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次