期刊论文详细信息
Electric field driven flat bands: Enhanced magnetoelectric and electrocaloric effects in frustrated quantum magnets
Article
关键词: HUBBARD MODELS;    HEISENBERG-ANTIFERROMAGNET;    TEMPERATURE PROPERTIES;    SAWTOOTH CHAIN;    LANCZOS METHOD;    DELTA-CHAIN;    FERROMAGNETISM;    MULTIFERROICS;    PHYSICS;    SYSTEM;   
DOI  :  10.1103/PhysRevB.105.054420
来源: SCIE
【 摘 要 】

The J(1)-J(2) quantum spin sawtooth chain is a paradigmatic one-dimensional frustrated quantum spin system exhibiting unconventional ground-state and finite-temperature properties. In particular, it exhibits a flat energy band of one-magnon excitations accompanied by an enhanced magnetocaloric effect for two singular ratios of the basal interactions J(1) and the zigzag interactions J(2). In our paper, we demonstrate that one can drive the spin system into a flat-band scenario by applying an appropriate electric field, thus overcoming the restriction of fine-tuned exchange couplings J(1) and J(2) and allowing one to tune more materials towards flat-band physics, that is, to show a macroscopic magnetization jump when crossing the magnetic saturation field, a residual entropy at zero temperature, as well as an enhanced magnetocaloric effect. While the magnetic field acts on the spin system via the ordinary Zeeman term, the coupling of an applied electric field with the spins is given by the sophisticated Katsura-Nagaosa-Balatsky (KNB) mechanism, where the electric field effectively acts as a Dzyaloshinskii-Moriya spin-spin interaction. The resulting features are corresponding reciprocal effects: We find a magnetization jump driven by the electric field as well as a jump of the electric polarization driven by the magnetic field; i.e., the system exhibits an extraordinarily strong magnetoelectric effect. Moreover, in analogy to the enhanced magnetocaloric effect, the system shows an enhanced electrocaloric effect.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次