期刊论文详细信息
Extending the spin coherence lifetimes of Er-167(3+) :Y2SiO5 at subkelvin temperatures
Article
关键词: LATTICE-RELAXATION;    SPECTRAL DIFFUSION;    QUANTUM;    STORAGE;    MEMORY;    ENTANGLEMENT;    WAVELENGTH;    ECHOES;   
DOI  :  10.1103/PhysRevB.105.245134
来源: SCIE
【 摘 要 】

Er3+:Y2SiO5 is a material of particular interest due to its suitability for telecom-band quantum memories and quantum transducers interfacing optical communication with quantum computers working in the microwave regime. Extending the coherence lifetimes of the electron spins and the nuclear spins is essential for implementing efficient quantum information processing based on such hybrid electron-nuclear spin systems. The electron spin coherence time of Er3+:Y2SiO5 is so far limited to several microseconds, and there are significant challenges in optimizing coherence lifetimes simultaneously for both the electron and nuclear spins. Here we perform a pulsed-electron-nuclear-double-resonance investigation for an Er3+-doped material at subkelvin temperatures. At the lowest working temperature, the electron spin coherence time reaches 290 ?? 17 ??s, which has been enhanced by 40 times compared with the previous results. In the subkelvin regime, a rapid increase in the nuclear spin coherence time is observed, and the longest coherence time of 738 ?? 6 ??s is obtained. These extended coherence lifetimes could be valuable resources for further applications of Er3+:Y2SiO5 in fiber-based quantum networks.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:4次