期刊论文详细信息
Relative importance of the electron interaction strength and disorder in the two-dimensional metallic state
Article
关键词: CHARGED IMPURITY-SCATTERING;    LOW-TEMPERATURE RESISTIVITY;    INSULATOR-TRANSITION;    INVERSION-LAYERS;    SILICON;    LOCALIZATION;    PHASE;    B=0;    DEPENDENCE;    MOBILITY;   
DOI  :  10.1103/PhysRevB.66.075324
来源: SCIE
【 摘 要 】

The effect of substrate bias and surface gate voltage on the low-temperature resistivity of a Si-MOSFET is studied for electron concentrations where the resistivity increases with increasing temperature. This technique offers two degrees of freedom for controlling the electron concentration and the device mobility, thereby providing a means to evaluate the relative importance of electron-electron interactions and disorder in this so-called metallic regime. For temperatures well below the Fermi temperature, the data obey a scaling law where the disorder parameter (k(F)l), and not the concentration (and thus r(s)), appears explicitly. This suggests that interactions, although present, do not alter the Fermi-liquid properties of the system fundamentally. Furthermore, this experimental observation is reproduced in results of calculations based on temperature-dependent screening, in the context of Drude-Boltzmann theory.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:2次