Scaling relations in the quasi-two-dimensional Heisenberg antiferromagnet | |
Article | |
关键词: RENORMALIZATION-GROUP APPROACH; LOW-TEMPERATURE BEHAVIOR; SPIN CORRELATIONS; NEEL TEMPERATURE; DYNAMICS; SR2CUO2CL2; SCATTERING; LA2CUO4; MODEL; STATE; | |
DOI : 10.1103/PhysRevB.74.184407 | |
来源: SCIE |
【 摘 要 】
The large-N expansion of the quasi-two-dimensional quantum nonlinear sigma model is used in order to establish experimentally applicable universal scaling relations for the quasi-two-dimensional Heisenberg antiferromagnet. We show that, at N=infinity, the renormalized coordination number introduced by Yasuda [Phys. Rev. Lett. 94, 217201 (2005)] is a universal number in the limit of J(')/J -> 0. Moreover, similar scaling relations proposed by Hastings and Mudry [Phys. Rev. Lett. 96, 027215 (2006)] are derived at N=infinity for the three-dimensional static spin susceptibility at the wave vector (pi,pi,0), as well as for the instantaneous structure factor at the same wave vector. We then use 1/N corrections to study the relation between interplane coupling, correlation length, and critical temperature, and show that the universal scaling relations lead to logarithmic corrections to previous mean-field results.
【 授权许可】
Free