Universal scaling of the magnetic anisotropy in two-dimensional rare-earth layers | |
Article | |
关键词: TEMPERATURE-DEPENDENCE; ULTRATHIN FILMS; MAGNETOCRYSTALLINE ANISOTROPY; CURIE TEMPERATURES; SPIN-REORIENTATION; CRYSTAL FIELDS; SUPERLATTICES; HOLMIUM; MAGNETOSTRICTION; MULTILAYERS; | |
DOI : 10.1103/PhysRevB.92.020416 | |
来源: SCIE |
【 摘 要 】
Unraveling the influence that low dimensionality has upon the spin's stability in two-dimensional (2D) systems is instrumental for the efficient engineering of energy barriers in ultrathinmagnetic layers. Taking rare-earth-based ultrathin multilayered nanostructures as a model system, we have investigated the dissimilar impact that low dimensionality and finite-size effects have upon the magnetic anisotropy energy (MAE) at the nanoscale. We conclusively show that the reduced dimensionality of the spin's system in 2D ferromagnetic layers imprints on the MAE constants a universal temperature decay as a quadratic power law of the reduced magnetization. This result is in agreement with predictions, although in marked contrast to the rank-dependent, thereby faster, decay of the MAE constants observed in three-dimensional nanostructures.
【 授权许可】
Free