期刊论文详细信息
Thermal ionization and thermally activated crossover quenching processes for 5d-4f luminescence in Y3Al5-xGaxO12 : Pr3+
Article
关键词: EXCITATION SPECTROSCOPY;    ELECTRONIC-STRUCTURE;    OPTICAL-PROPERTIES;    ENERGY-TRANSFER;    SINGLE-CRYSTAL;    CE3+;    PHOSPHORS;    SOLIDS;    SHIFT;    HOST;   
DOI  :  10.1103/PhysRevB.95.014303
来源: SCIE
【 摘 要 】

We investigated thermally activated ionization and thermally activated crossover as the two possibilities of quenching of 5d luminescence in Pr3+-doped Y3Al5-xGaxO12. Varying the Ga content x gives the control over the relative energy level location of the 5d and 4f(2) : P-3(J) states of Pr3+ and the host conduction band (CB). Temperature-dependent luminescence lifetime measurements show that the 5d luminescence quenching temperature T-50% increases up to x = 2 and decreases with further increasing Ga content. This peculiar behavior is explained by a unique transition between the two quenching mechanisms which have an opposite dependence of thermal quenching on Ga content. For low Ga content, thermally activated crossover from the 4f 5d state to the 4f(2)((3)PJ) states is the operative quenching mechanism. With increasing Ga content, the activation energy for thermally activated crossover becomes larger, as derived from the configuration coordinate diagram, while from the vacuum referred binding energy diagram the activation energy of thermal ionization becomes smaller. Based on these results, we demonstrated that the thermal quenching of Pr3+ : 5d(1)-4f luminescence in Y3Al5-xGaxO12 with x = 0, 1, 2 is a thermally activated crossover while for x = 3, 4, 5 it results from the thermal ionization.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:5次