期刊论文详细信息
Accurate and efficient description of interacting carriers in quantum nanostructures by selected configuration interaction and perturbation theory
Article
关键词: EXCITED-STATES;    DOTS;    ENTANGLEMENT;    SPECTROSCOPY;   
DOI  :  10.1103/PhysRevB.101.205308
来源: SCIE
【 摘 要 】

We present a method to accurately and efficiently calculate many-body states of interacting carriers in quantum nanostructures based on a combination of iterative selection of configurations and perturbation theory. This method enables investigations of large excitonic complexes and multielectron systems with near full configuration interaction accuracy, even though only a small subspace of the full many-body Hilbert space is sampled, thus saving orders of magnitudes in computational resources. Important advantages of this method are that the convergence is controlled by a single parameter, the threshold, and that ground and excited states can be treated on an equal footing. On the example of InAsP nanowire quantum dots described using a million-atom tight-binding approach, we demonstrate the extreme efficiency of the method by numerical studies of large excitonic complexes filling up to the fourth electronic shell. We find that the method generally converges fast as a function of the threshold, profiting from a significant acceleration due to the perturbative corrections. The role of the choice of single-particle basis states is discussed. It is found that the algorithm converges faster in the Hartree-Fock basis only for highly charged systems, where Coulomb repulsion dominates. Finally, based on the observation that second-order perturbative energy corrections only depend on off-diagonal elements of the many-body Hamiltonian, we present a way to accurately calculate many-body states that requires only a relatively small number of Coulomb matrix elements.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次