Quasiparticle conductance in spin valve Josephson structures | |
Article | |
关键词: ENERGY-GAP STRUCTURE; ODD TRIPLET SUPERCONDUCTIVITY; FERROMAGNET; TRANSITION; SCATTERING; JUNCTION; MODEL; | |
DOI : 10.1103/PhysRevB.101.184522 | |
来源: SCIE |
【 摘 要 】
We study the quasiparticle current in clean ferromagnetic Josephson structures of the form S-1/F-1/N/F-2/S-2, where S, F, and N denote superconducting, ferromagnetic, or normal layers, respectively. Our focus is on the structure of the conductance G as a function of bias V, emphasizing the subgap region. We use a fully self-consistent numerical method, coupled to a transfer matrix procedure to extract G(V). We choose material parameters appropriate to experimentally realized Co Cu Nb structures. We find a resonance peak structure as a function of the intermediate layer thickness and of the misalignment angle phi between F layers. To understand this resonance structure, we develop an approximate analytic method. For experimentally relevant thicknesses, the conductance has multiple subgap peaks, which oscillate in position between low and critical bias positions. These oscillations occur in both phi and the layer thicknesses. We compare our results with those obtained for the spin valve structures (F-1/N/F-2/S-2) and discuss the implications of our results for the fabrication of spin Josephson devices.
【 授权许可】
Free