Contrasting influence of charged impurities on transport and gain in terahertz quantum cascade lasers | |
Article | |
关键词: ELECTRON-TRANSPORT; SCATTERING; IMPACT; | |
DOI : 10.1103/PhysRevB.92.241306 | |
来源: SCIE |
【 摘 要 】
Transport and gain properties of a resonant-phonon terahertz quantum cascade laser are calculated using nonequilibrium Green's functions. Impurity scattering is shown to be responsible for contrasting nonlinear effects in the transport and the gain properties. For typical doping concentrations, the current density is found to be weakly sensitive to the impurity scattering strength. In contrast, the calculated gain is found to be very sensitive to the impurity scattering strength. This difference is attributed to the strong momentum dependence of the long-range coupling to charged impurities. Small-momentum impurity scattering is shown to be responsible for an incoherent regime of resonant tunneling processes. These insights into the crucial role of impurity scattering open a route of improvement of terahertz quantum cascade lasers by engineering of the doping profile.
【 授权许可】
Free