Discretized Abelian Chern-Simons gauge theory on arbitrary graphs | |
Article | |
关键词: FERMI-BOSE TRANSMUTATIONS; FRACTIONAL STATISTICS; KAGOME LATTICES; SPIN SYSTEMS; FIELD-THEORY; QUANTUM; STATES; MODEL; | |
DOI : 10.1103/PhysRevB.92.115148 | |
来源: SCIE |
【 摘 要 】
In this paper, we show how to discretize the Abelian Chern-Simons gauge theory on generic planar lattices/graphs (with or without translational symmetries) embedded in arbitrary two-dimensional closed orientable manifolds. We find that, as long as a one-to-one correspondence between vertices and faces can be defined on the graph such that each face is paired up with a neighboring vertex (and vice versa), a discretized Abelian Chern-Simons theory can be constructed consistently. We further verify that all the essential properties of the Chern-Simons gauge theory are preserved in the discretized setup. In addition, we find that the existence of such a one-to-one correspondence is not only a sufficient condition for discretizing a Chern-Simons gauge theory but, for the discretized theory to be nonsingular and to preserve some key properties of the topological field theory, this correspondence is also a necessary one. A specific example will then be provided, in which we discretize the Abelian Chern-Simons gauge theory on a tetrahedron.
【 授权许可】
Free