期刊论文详细信息
Optical and dc conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections
Article
关键词: HIGH-TEMPERATURE SUPERCONDUCTIVITY;    CORRELATED ELECTRON-SYSTEMS;    GROUND-STATE ENERGY;    SPIN FLUCTUATIONS;    FERMI-LIQUID;    2 DIMENSIONS;    CONSERVING APPROXIMATIONS;    INTERACTING FERMIONS;    FINITE-TEMPERATURE;    CRITICAL-BEHAVIOR;   
DOI  :  10.1103/PhysRevB.84.085128
来源: SCIE
【 摘 要 】

The conductivity of the two-dimensional Hubbard model is particularly relevant for high-temperature superconductors. Vertex corrections are expected to be important because of strongly momentum-dependent self-energies. To attack this problem, one must also take into account the Mermin-Wagner theorem, the Pauli principle, and crucial sum rules in order to reach nonperturbative regimes. Here, we use the two-particle self-consistent approach that satisfies these constraints. This approach is reliable from weak to intermediate coupling. A functional derivative approach ensures that vertex corrections are included in a way that satisfies the f-sum rule. The two types of vertex corrections that we find are the antiferromagnetic analogs of the Maki-Thompson and Aslamasov-Larkin contributions of superconducting fluctuations to the conductivity but, contrary to the latter, they include nonperturbative effects. The resulting analytical expressions must be evaluated numerically. The calculations are impossible unless a number of advanced numerical algorithms are used. These algorithms make extensive use of fast Fourier transforms, cubic splines, and asymptotic forms. A maximum entropy approach is specially developed for analytical continuation of our results. These algorithms are explained in detail in the appendices. The numerical results are for nearest-neighbor hoppings. In the pseudogap regime induced by two-dimensional antiferromagnetic fluctuations, the effect of vertex corrections is dramatic. Without vertex corrections the resistivity increases as we enter the pseudogap regime. Adding vertex corrections leads to a drop in resistivity, as observed in some high-temperature superconductors. At high temperatures, the resistivity saturates at the Ioffe-Regel limit. At the quantum critical point and beyond, the resistivity displays both linear and quadratic temperature dependence and there is a correlation between the linear term and the superconducting transition temperature. A hump is observed in the mid-infrared range of the optical conductivity in the presence of antiferromagnetic fluctuations.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:2次