期刊论文详细信息
Endothelial C-Type Natriuretic Peptide Is a Critical Regulator of Angiogenesis and Vascular Remodeling
Article
关键词: SMOOTH-MUSCLE-CELLS;    GROWTH-FACTOR;    PROMOTES ANGIOGENESIS;    GENE-TRANSFER;    FACTOR-I;    RECEPTOR;    EXPRESSION;    THERAPY;    HYPOXIA;    STRESS;   
DOI  :  10.1161/CIRCULATIONAHA.118.036344
来源: SCIE
【 摘 要 】

BACKGROUND: Angiogenesis and vascular remodeling are complementary, innate responses to ischemic cardiovascular events, including peripheral artery disease and myocardial infarction, which restore tissue blood supply and oxygenation; the endothelium plays a critical function in these intrinsic protective processes. C-type natriuretic peptide (CNP) is a fundamental endothelial signaling species that coordinates vascular homeostasis. Herein, we sought to delineate a central role for CNP in angiogenesis and vascular remodeling in response to ischemia. METHODS: The in vitro angiogenic capacity of CNP was examined in pulmonary microvascular endothelial cells and aortic rings isolated from wild-type, endothelium-specific CNP-/-, global natriuretic peptide receptor (NPR)-B-/- and NPR-C-/- animals, and human umbilical vein endothelial cells. These studies were complemented by in vivo investigation of neovascularization and vascular remodeling after ischemia or vessel injury, and CNP/NPR-C expression and localization in tissue from patients with peripheral artery disease. RESULTS: Clinical vascular ischemia is associated with reduced levels of CNP and its cognate NPR-C. Moreover, genetic or pharmacological inhibition of CNP and NPR-C, but not NPR-B, reduces the angiogenic potential of pulmonary microvascular endothelial cells, human umbilical vein endothelial cells, and isolated vessels ex vivo. Angiogenesis and remodeling are impaired in vivo in endothelium-specific CNP-/- and NPR-C-/-, but not NPR-B-/-, mice; the detrimental phenotype caused by genetic deletion of endothelial CNP, but not NPR-C, can be rescued by pharmacological administration of CNP. The proangiogenic effect of CNP/ NPR-C is dependent on activation of G(i), ERK1/2, and phosphoinositide 3-kinase gamma/Akt at a molecular level. CONCLUSIONS: These data define a central (patho) physiological role for CNP in angiogenesis and vascular remodeling in response to ischemia and provide the rationale for pharmacological activation of NPR-C as an innovative approach to treating peripheral artery disease and ischemic cardiovascular disorders.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次