期刊论文详细信息
High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase
Article
关键词: SMOOTH-MUSCLE CELLS;    ANGIOTENSIN-II;    NADH/NADPH OXIDASE;    ENDOTHELIAL DYSFUNCTION;    RESISTANCE ARTERIES;    ACUTE HYPERTENSION;    NADPH OXIDASE;    FLOW;    EXPRESSION;    INCREASES;   
DOI  :  10.1161/01.CIR.0000079165.84309.4D
来源: SCIE
【 摘 要 】

Background - Oxidative stress seems to be present in all forms of hypertension. Thus, we tested the hypothesis that high intraluminal pressure (P-i) itself, by activating vascular oxidases, elicits increased superoxide (O-2(.-)) production interfering with flow-induced dilation. Methods and Results - Isolated, cannulated rat femoral arterial branches were exposed in vitro ( for 30 minutes) to normal P-i (80 mm Hg) or high P-i (160 mm Hg). High P-i significantly increased vascular O-2(.-) production ( as measured by lucigenin chemiluminescence and ethidium bromide fluorescence) and impaired endothelium-dependent dilations to flow; these effects could be reversed by superoxide dismutase. Administration of the NAD(P)H oxidase inhibitor diphenyleneiodonium, apocynin, the protein kinase C (PKC) inhibitor chelerythrine or staurosporin or the removal of extracellular Ca2+ during high P-i treatment prevented the increases in O-2(.-) production, whereas administration of losartan or captopril had no effect. High P-i resulted in significant increases in intracellular Ca2+ ([Ca2+](i)) in the vascular wall ( fura 2 fluorescence) and phosphorylation of PKCalpha ( Western blotting). The PKC activator phorbol myristate acetate significantly increased vascular O-2(.-) production, which was inhibited by superoxide dismutase, diphenyleneiodonium, chelerythrine, or removal of extracellular Ca2+. Both high P-i and phorbol myristate acetate increased the phosphorylation of the NAD( P) H oxidase subunit p47(phox). Conclusion - High P-i itself elicits arterial O-2(.-) production, most likely by PKC-dependent activation of NAD( P) H oxidase, thus providing a potential explanation for the presence of oxidative stress and endothelial dysfunction in various forms of hypertension and the vasculoprotective effect of antihypertensive agents of different mechanisms of action.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次