Ryanodine Receptor Phosphorylation by Calcium/Calmodulin-Dependent Protein Kinase II Promotes Life-Threatening Ventricular Arrhythmias in Mice With Heart Failure | |
Article | |
关键词: INDUCED CARDIAC-HYPERTROPHY; INTRACELLULAR CALCIUM LEAK; FKBP12.6 DEFICIENCY; MOUSE MODEL; TACHYCARDIA; INHIBITION; MUTATION; SPARKS; | |
DOI : 10.1161/CIRCULATIONAHA.110.982298 | |
来源: SCIE |
【 摘 要 】
Background-Approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca2+ release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca2+ remain unknown. We tested the hypothesis that increased RyR2 phosphorylation by Ca2+/calmodulin-dependent protein kinase II is both necessary and sufficient to promote lethal ventricular arrhythmias. Methods and Results-Mice in which the S2814 Ca2+/calmodulin-dependent protein kinase II site on RyR2 is constitutively activated (S2814D) develop pathological sarcoplasmic reticulum Ca2+ release events, resulting in reduced sarcoplasmic reticulum Ca2+ load on confocal microscopy. These Ca2+ release events are associated with increased RyR2 open probability in lipid bilayer preparations. At baseline, young S2814D mice have structurally and functionally normal hearts without arrhythmias; however, they develop sustained ventricular tachycardia and sudden cardiac death on catecholaminergic provocation by caffeine/epinephrine or programmed electric stimulation. Young S2814D mice have a significant predisposition to sudden arrhythmogenic death after transverse aortic constriction surgery. Finally, genetic ablation of the Ca2+/calmodulin-dependent protein kinase II site on RyR2 (S2814A) protects mutant mice from pacing-induced arrhythmias versus wild-type mice after transverse aortic constriction surgery. Conclusions-Our results suggest that Ca2+/calmodulin-dependent protein kinase II phosphorylation of RyR2 Ca2+ release channels at S2814 plays an important role in arrhythmogenesis and sudden cardiac death in mice with heart failure. (Circulation. 2010;122:2669-2679.)
【 授权许可】
Free