期刊论文详细信息
Molecular Magnetic Resonance Imaging of Myocardial Angiogenesis After Acute Myocardial Infarction
Article
关键词: ISCHEMIC-HEART-DISEASE;    THERAPEUTIC ANGIOGENESIS;    CONTRAST AGENT;    CORONARY ANGIOGENESIS;    IN-VIVO;    MODEL;    MICE;    APOPTOSIS;    TARGET;    CANCER;   
DOI  :  10.1161/CIRCULATIONAHA.109.889451
来源: SCIE
【 摘 要 】

Background-Angiogenesis is a natural mechanism to restore perfusion to the ischemic myocardium after acute myocardial infarction (MI). Therapeutic angiogenesis is being explored as a novel treatment for MI patients; however, sensitive, noninvasive in vivo measures of therapeutic efficacy are lacking and need to be developed. Here, a molecular magnetic resonance imaging method is presented to noninvasively image angiogenic activity in vivo in a murine model of MI with cyclic Asn-Gly-Arg (cNGR)-labeled paramagnetic quantum dots (pQDs). The tripeptide cNGR homes specifically to CD13, an aminopeptidase that is strongly upregulated during myocardial angiogenesis. Methods and Results-Acute MI was induced in male Swiss mice via permanent ligation of the left anterior descending coronary artery. Molecular magnetic resonance imaging was performed 7 days after surgery and up to 2 hours after intravenous contrast agent administration. Injection of cNGR-pQDs resulted in a strong negative contrast that was located mainly in the infarcted myocardium. This negative contrast was significantly less in MI mice injected with unlabeled pQDs and in sham-operated mice injected with cNGR-pQDs. Validation with ex vivo 2-photon laser scanning microscopy revealed a strong colocalization of cNGR-pQDs with vascular endothelial cells, whereas unlabeled pQDs were mostly extravasated and diffused through the tissue. Additionally, 2-photon laser scanning microscopy demonstrated significant microvascular remodeling in the infarct/border zones compared with remote myocardium. Conclusions-cNGR-pQDs allow selective, noninvasive detection of angiogenic activity in the infarcted heart with the use of in vivo molecular magnetic resonance imaging and ex vivo 2-photon laser scanning microscopy. (Circulation. 2010; 121: 775-783.)

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:3次