期刊论文详细信息
Small-Conductance Calcium-Activated Potassium Current Is Activated During Hypokalemia and Masks Short-Term Cardiac Memory Induced by Ventricular Pacing
Article
关键词: FAILING RABBIT VENTRICLES;    RENIN-ANGIOTENSIN SYSTEM;    RECTIFIER K+ CURRENT;    EARLY AFTERDEPOLARIZATIONS;    CANINE HEART;    T-WAVE;    CHANNEL;    MYOCYTES;    REPOLARIZATION;    FIBRILLATION;   
DOI  :  10.1161/CIRCULATIONAHA.114.015125
来源: SCIE
【 摘 要 】

Background-Hypokalemia increases the vulnerability to ventricular fibrillation. We hypothesize that the apamin-sensitive small-conductance calcium-activated potassium current (I-KAS) is activated during hypokalemia and that I-KAS blockade is proarrhythmic. Methods and Results-Optical mapping was performed in 23 Langendorff-perfused rabbit ventricles with atrioventricular block and either right or left ventricular pacing during normokalemia or hypokalemia. Apamin prolonged the action potential duration (APD) measured to 80% repolarization (APD(80)) by 26 milliseconds (95% confidence interval [CI], 14-37) during normokalemia and by 54 milliseconds (95% CI, 40-68) during hypokalemia (P=0.01) at a 1000-millisecond pacing cycle length. In hypokalemic ventricles, apamin increased the maximal slope of APD restitution, the pacing cycle length threshold of APD alternans, the pacing cycle length for wave-break induction, and the area of spatially discordant APD alternans. Apamin significantly facilitated the induction of sustained ventricular fibrillation (from 3 of 9 hearts to 9 of 9 hearts; P=0.009). Short-term cardiac memory was assessed by the slope of APD(80) versus activation time. The slope increased from 0.01 (95% CI, -0.09 to 0.12) at baseline to 0.34 (95% CI, 0.23-0.44) after apamin (P<0.001) during right ventricular pacing and from 0.07 (95% CI, -0.05 to 0.20) to 0.54 (95% CI, 0.06-1.03) after apamin infusion (P=0.045) during left ventricular pacing. Patch-clamp studies confirmed increased I-KAS in isolated rabbit ventricular myocytes during hypokalemia (P=0.038). Conclusions-Hypokalemia activates I-KAS to shorten APD and maintain repolarization reserve at late activation sites during ventricular pacing. I-KAS blockade prominently lengthens the APD at late activation sites and facilitates ventricular fibrillation induction.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次