期刊论文详细信息
A synthetic antibiotic class overcoming bacterial multidrug resistance
Article
关键词: PEPTIDYL TRANSFERASE CENTER;    POTENT ANTIBACTERIAL;    PROTEIN-SYNTHESIS;    RIBOSOMAL-RNA;    STREPTOGRAMIN ANTIBIOTICS;    CONFERS RESISTANCE;    STRUCTURAL BASIS;    CLINDAMYCIN;    MACROLIDE;    LINCOSAMIDE;   
DOI  :  10.1038/s41586-021-04045-6
来源: SCIE
【 摘 要 】

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern(1). For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings(2). Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the m(2)(6)A2058 nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次