期刊论文详细信息
Progress and prospects in magnetic topological materials
Review
关键词: DIRAC FERMIONS;    SURFACE-STATES;    WEYL FERMIONS;    HALL STATE;    PHASE;    INSULATOR;    SEMIMETAL;    HEUSLER;    HETEROSTRUCTURE;    SPINTRONICS;   
DOI  :  10.1038/s41586-021-04105-x
来源: SCIE
【 摘 要 】

Magnetic topological materials represent a class of compounds with properties that are strongly influenced by the topology of their electronic wave functions coupled with the magnetic spin configuration. Such materials can support chiral electronic channels of perfect conduction, and can be used for an array of applications, from information storage and control to dissipationless spin and charge transport. Here we review the theoretical and experimental progress achieved in the field of magnetic topological materials, beginning with the theoretical prediction of the quantum anomalous Hall effect without Landau levels, and leading to the recent discoveries of magnetic Weyl semimetals and antiferromagnetic topological insulators. We outline recent theoretical progress that has resulted in the tabulation of, for the first time, all magnetic symmetry group representations and topology. We describe several experiments realizing Chern insulators, Weyl and Dirac magnetic semimetals, and an array of axionic and higher-order topological phases of matter, and we survey future perspectives.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:2次