NMDAR inhibition-independent antidepressant actions of ketamine metabolites | |
Article | |
关键词: D-ASPARTATE ANTAGONIST; STAR-ASTERISK-D; SUSTAINED ANTIDEPRESSANT; RECEPTOR ANTAGONIST; SEX-DIFFERENCES; AMPA RECEPTOR; DEPRESSION; STRESS; CORTEX; RAT; | |
DOI : 10.1038/nature17998 | |
来源: SCIE |
【 摘 要 】
Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-D-aspartate receptor) antagonist(R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.
【 授权许可】
Free