期刊论文详细信息
High-dimensional geometry of population responses in visual cortex
Article
关键词: CELL RECEPTIVE-FIELDS;    SPATIAL STRUCTURE;    INFORMATION;    STATISTICS;    ORGANIZATION;    COMPUTATION;    DYNAMICS;   
DOI  :  10.1038/s41586-019-1346-5
来源: SCIE
【 摘 要 】

A neuronal population encodes information most efficiently when its stimulus responses are high-dimensional and uncorrelated, and most robustly when they are lower-dimensional and correlated. Here we analysed the dimensionality of the encoding of natural images by large populations of neurons in the visual cortex of awake mice. The evoked population activity was high-dimensional, and correlations obeyed an unexpected power law: the nth principal component variance scaled as 1/n. This scaling was not inherited from the power law spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that if the variance spectrum was to decay more slowly then the population code could not be smooth, allowing small changes in input to dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness may represent a fundamental constraint that determines correlations in neural population codes.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次