A 'checkerboard' electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2 | |
Article | |
关键词: QUASI-PARTICLE STATES; PSEUDOGAP; MAGNETISM; PHASES; MODEL; | |
DOI : 10.1038/nature02861 | |
来源: SCIE |
【 摘 要 】
The phase diagram of hole-doped copper oxides shows four different electronic phases existing at zero temperature. Familiar among these are the Mott insulator, high-transition-temperature superconductor and metallic phases. A fourth phase, of unknown identity, occurs at light doping along the zero-temperature bound of the 'pseudogap' regime(1). This regime is rich in peculiar electronic phenomena(1), prompting numerous proposals that it contains some form of hidden electronic order. Here we present low-temperature electronic structure imaging studies of a lightly hole-doped copper oxide: Ca2-xNaxCuO2Cl2. Tunnelling spectroscopy (at energies \E\ > 100 meV) reveals electron extraction probabilities greatly exceeding those for injection, as anticipated for a doped Mott insulator. However, for \E\ < 100 meV, the spectrum exhibits a V-shaped energy gap centred on E = 0. States within this gap undergo intense spatial modulations, with the spatial correlations of a four CuO2-unit-cell square 'checkerboard', independent of energy. Intricate atomic-scale electronic structure variations also exist within the checkerboard. These data are consistent with an unanticipated crystalline electronic state, possibly the hidden electronic order, existing in the zero-temperature pseudogap regime of Ca2-xNaxCuO2Cl2.
【 授权许可】
Free