Activation of STING by targeting a pocket in the transmembrane domain | |
Article | |
关键词: CYCLIC GMP-AMP; CGAS; 2ND-MESSENGER; ADAPTER; LIGAND; TRANSLOCATION; RECOGNITION; MECHANISM; FEATURES; SENSOR; | |
DOI : 10.1038/s41586-022-04559-7 | |
来源: SCIE |
【 摘 要 】
Stimulator of interferon genes (STING) is an adaptor protein in innate immunity against DNA viruses or bacteria(1-5). STING-mediated immunity could be exploited in the development of vaccines or cancer immunotherapies. STING is a transmembrane dimeric protein that is located in the endoplasmic reticulum or in the Golgi apparatus. STING is activated by the binding of its cytoplasmic ligand-binding domain to cyclic dinucleotides that are produced by the DNA sensor cyclic GMP-AMP (cGAMP) synthase or by invading bacteria(1,6,7). Cyclic dinucleotides induce a conformational change in the STING ligand-binding domain, which leads to a high-order oligomerization of STING that is essential for triggering the downstream signalling pathways(8,9). However, the cGAMP-induced STING oligomers tend to dissociate in solution and have not been resolved to high resolution, which limits our understanding of the activation mechanism. Here we show that a small-molecule agonist, compound 53 (C53)(10), promotes the oligomerization and activation of human STING through a mechanism orthogonal to that of cGAMP. We determined a cryo-electron microscopy structure of STING bound to both C53 and cGAMP, revealing a stable oligomer that is formed by side-by-side packing and has a curled overall shape. Notably, C53 binds to a cryptic pocket in the STING transmembrane domain, between the two subunits of the STING dimer. This binding triggers outward shifts of transmembrane helices in the dimer, and induces inter-dimer interactions between these helices to mediate the formation of the high-order oligomer. Our functional analyses show that cGAMP and C53 together induce stronger activation of STING than either ligand alone.
【 授权许可】
Free