期刊论文详细信息
In situ formation of ZnOx species for efficient propane dehydrogenation
Article
关键词: TOTAL-ENERGY CALCULATIONS;    PROPYLENE HYDROGENATION;    CATALYSTS;    OXIDE;    SELECTIVITY;    REACTIVITY;    STABILITY;    ISOBUTANE;    CLUSTERS;    ZEOLITE;   
DOI  :  10.1038/s41586-021-03923-3
来源: SCIE
【 摘 要 】

Propane dehydrogenation (PDH) to propene is an important alternative to oil-based cracking processes, to produce this industrially important platform chemical(1,2). The commercial PDH technologies utilizing Cr-containing (refs. (3,4)) or Pt-containing (refs. (5-8)) catalysts suffer from the toxicity of Cr(vi) compounds or the need to use ecologically harmful chlorine for catalyst regeneration(9). Here, we introduce a method for preparation of environmentally compatible supported catalysts based on commercial ZnO. This metal oxide and a support (zeolite or common metal oxide) are used as a physical mixture or in the form of two layers with ZnO as the upstream layer. Supported ZnOx species are in situ formed through a reaction of support OH groups with Zn atoms generated from ZnO upon reductive treatment above 550 degrees C. Using different complementary characterization methods, we identify the decisive role of defective OH groups for the formation of active ZnOx species. For benchmarking purposes, the developed ZnO-silicalite-1 and an analogue of commercial K-CrOx/Al2O3 were tested in the same setup under industrially relevant conditions at close propane conversion over about 400 h on propane stream. The developed catalyst reveals about three times higher propene productivity at similar propene selectivity. Propene is obtained through propane dehydrogenation using catalysts that are toxic, expensive or demanding to regenerate with ecologically harmful compounds, but the ZnO-based alternative reported here is cheap, clean and scalable.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次