| The birth of a quasiparticle in silicon observed in time-frequency space | |
| Article | |
| 关键词: RAMAN-SCATTERING; TEMPERATURE-DEPENDENCE; LIGHT-SCATTERING; CRITICAL-POINTS; FREE-CARRIERS; SI; SEMICONDUCTORS; INTERFERENCE; ELECTRON; BAND; | |
| DOI : 10.1038/nature02044 | |
| 来源: SCIE | |
【 摘 要 】
The concept of quasiparticles in solid-state physics is an extremely powerful tool for describing complex many-body phenomena in terms of single-particle excitations(1). Introducing a simple particle, such as an electron, hole or phonon, deforms a manybody system through its interactions with other particles. In this way, the added particle is 'dressed' or 'renormalized' by a self-energy cloud that describes the response of the many-body system, so forming a new entity - the quasiparticle. Using ultrafast laser techniques, it is possible to impulsively generate bare particles and observe their subsequent dressing by the many-body interactions ( that is, quasiparticle formation) on the time and energy scales governed by the Heisenberg uncertainty principle(2). Here we describe the coherent response of silicon to excitation with a 10-femtosecond (10(-14) s) laser pulse. The optical pulse interacts with the sample by way of the complex second-order nonlinear susceptibility to generate a force on the lattice driving coherent phonon excitation. Transforming the transient reflectivity signal into frequency - time space reveals interference effects leading to the coherent phonon generation and subsequent dressing of the phonon by electron - hole pair excitations.
【 授权许可】
Free