期刊论文详细信息
Biomechanical forces promote embryonic haematopoiesis
Article
关键词: NITRIC-OXIDE SYNTHASE;    STEM-CELLS;    MOUSE EMBRYO;    DEFINITIVE HEMATOPOIESIS;    IN-VITRO;    YOLK-SAC;    EXPRESSION DEFINES;    ENDOTHELIAL-CELLS;    PROGENITOR CELLS;    FLOW;   
DOI  :  10.1038/nature08073
来源: SCIE
【 摘 要 】

Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system(1,2). After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells(4). It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential(6). Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41(+)c-Kit(+) haematopoietic progenitor cells(7), concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling(8), compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:4次