期刊论文详细信息
Butterfly genome reveals promiscuous exchange of mimicry adaptations among species
Article
关键词: GENE FLOW;    HELICONIUS;    EVOLUTION;    HYBRIDIZATION;    SYNTENY;    LEPIDOPTERA;    SPECIATION;    KARYOTYPE;    INSIGHTS;   
DOI  :  10.1038/nature11041
来源: SCIE
【 摘 要 】

The evolutionary importance of hybridization and introgression has long been debated(1). Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation(2-5). We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次