The diversity of quasars unified by accretion and orientation | |
Article | |
关键词: ACTIVE GALACTIC NUCLEI; BLACK-HOLE MASSES; X-RAY-PROPERTIES; DATA RELEASE; SCALING RELATIONSHIPS; STELLAR OBJECTS; EMISSION-LINES; HOST GALAXIES; RADIO-LOUD; DEPENDENCE; | |
DOI : 10.1038/nature13712 | |
来源: SCIE |
【 摘 要 】
Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as 'Eigenvector l', in which many properties correlate with the strength of optical iron and [O III] emission(1-3). The main physical driver of Eigenvector 1 has long been suspected(4) to be the quasar luminosity normalized by the mass of the hole (the 'Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.
【 授权许可】
Free