期刊论文详细信息
Structure of the key species in the enzymatic oxidation of methane to methanol
Article
关键词: MONOOXYGENASE CATALYTIC CYCLE;    O-O BOND;    METHYLOSINUS-TRICHOSPORIUM OB3B;    DENSITY-FUNCTIONAL CALCULATIONS;    DIAMOND CORE;    INTERMEDIATE-Q;    SPECTROSCOPIC CHARACTERIZATION;    PEROXODIFERRIC INTERMEDIATE;    RIBONUCLEOTIDE REDUCTASE;    DELTA(9) DESATURASE;   
DOI  :  10.1038/nature14160
来源: SCIE
【 摘 要 】

Methane monooxygenase (MMO) catalyses the O-2-dependent conversion of methane to methanol in methanotrophic bacteria, thereby preventing the atmospheric egress of approximately one billion tons of this potent greenhouse gas annually. The key reaction cycle intermediate of the soluble form of MMO(sMMO) is termed compoundQ (Q). Q contains a unique dinuclear Fe-IV cluster that reacts with methane to break an exceptionally strong 105 kcal mol(-1) C-H bond and insert one oxygen atom(1,2). No other biological oxidant, except that found in the particulate form of MMO, is capable of such catalysis. The structure of Q remains controversial despite numerous spectroscopic, computational and synthetic model studies(2-7). A definitive structural assignment can be made from resonance Raman vibrational spectroscopy but, despite efforts over the past two decades, no vibrational spectrum of Q has yet been obtained. Here we report the core structures of Q and the following product complex, compound T, using time-resolved resonance Raman spectroscopy (TR3). TR3 permits fingerprinting of intermediates by their unique vibrational signatures through extended signal averaging for short-lived species. We report unambiguous evidence that Q possesses a bis-mu-oxo diamond core structure and show that both bridging oxygens originate from O-2. This observation strongly supports a homolytic mechanism for O-Obond cleavage. We also show that T retains a single oxygen atom from O-2 as a bridging ligand, while the other oxygen atom is incorporated into the product(8). Capture of the extreme oxidizing potential of Q is of great contemporary interest for bioremediation and the development of synthetic approaches to methane-based alternative fuels and chemical industry feedstocks. Insight into the formation and reactivity of Q from the structure reported here is an important step towards harnessing this potential.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:5次