An optical-frequency synthesizer using integrated photonics | |
Article | |
关键词: NOBEL LECTURE; MICRORESONATOR; COMBS; GENERATION; CIRCUITS; CAVITY; LASER; | |
DOI : 10.1038/s41586-018-0065-7 | |
来源: SCIE |
【 摘 要 】
Optical-frequency synthesizers, which generate frequency-stable light from a single microwave-frequency reference, are revolutionizing ultrafast science and metrology, but their size, power requirement and cost need to be reduced if they are to be more widely used. Integrated-photonics microchips can be used in high-coherence applications, such as data transmission(1), highly optimized physical sensors(2) and harnessing quantum states(3), to lower cost and increase efficiency and portability. Here we describe a method for synthesizing the absolute frequency of a lightwave signal, using integrated photonics to create a phase-coherent microwave-to-optical link. We use a heterogeneously integrated III-V/silicon tunable laser, which is guided by nonlinear frequency combs fabricated on separate silicon chips and pumped by off-chip lasers. The laser frequency output of our optical-frequency synthesizer can be programmed by a microwave clock across 4 terahertz near 1,550 nanometres (the telecommunications C-band) with 1 hertz resolution. Our measurements verify that the output of the synthesizer is exceptionally stable across this region (synthesis error of 7.7 x 10(-15) or below). Any application of an optical-frequency source could benefit from the high-precision optical synthesis presented here. Leveraging high-volume semiconductor processing built around advanced materials could allow such low-cost, lowpower and compact integrated-photonics devices to be widely used.
【 授权许可】
Free