期刊论文详细信息
Re-evaluation of learned information in Drosophila
Article
关键词: LONG-TERM-MEMORY;    DOPAMINE NEURONS;    OLFACTORY MEMORY;    RECONSOLIDATION;    EXTINCTION;    PREDICTION;    REWARD;    EXPRESSION;    RETRIEVAL;    INHIBITION;   
DOI  :  10.1038/nature21716
来源: SCIE
【 摘 要 】

Animals constantly assess the reliability of learned information to optimize their behaviour. On retrieval, consolidated long-term memory can be neutralized by extinction if the learned prediction was inaccurate(1). Alternatively, retrieved memory can be maintained, following a period of reconsolidation during which it is labile(2). Although extinction and reconsolidation provide opportunities to alleviate problematic human memories(3-5), we lack a detailed mechanistic understanding of memory updating. Here we identify neural operations underpinning the re-evaluation of memory in Drosophila. Reactivation of reward-reinforced olfactory memory can lead to either extinction or reconsolidation, depending on prediction accuracy. Each process recruits activity in specific parts of the mushroom body output network and distinct subsets of reinforcing dopaminergic neurons. Memory extinction requires output neurons with dendrites in the alpha and alpha' lobes of the mushroom body, which drive negatively reinforcing dopaminergic neurons that innervate neighbouring zones. The aversive valence of these new extinction memories neutralizes previously learned odour preference. Memory reconsolidation requires the gamma 2 alpha'1 mushroom body output neurons. This pathway recruits negatively reinforcing dopaminergic neurons innervating the same compartment and re-engages positively reinforcing dopaminergic neurons to reconsolidate the original reward memory. These data establish that recurrent and hierarchical connectivity between mushroom body output neurons and dopaminergic neurons enables memory re-evaluation driven by reward-prediction error.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次