期刊论文详细信息
Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment
Article
关键词: ORGANIC-MATTER;    BACTERIA;    DIMETHYLSULFONIOPROPIONATE;    SULFUR;    BACTERIOPLANKTON;    CULTURE;    OCEANS;    BLOOM;    SNOW;   
DOI  :  10.1038/nature03170
来源: SCIE
【 摘 要 】

Since the recognition of prokaryotes as essential components of the oceanic food web(1), bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured(2) or have only been grown to low densities in sea water(3,4). Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade ( Fig. 1), the relatives of which comprise similar to10 - 20% of coastal and oceanic mixed-layer bacterioplankton(2,5,6,7). This first genome sequence from any major heterotrophic clade consists of a chromosome ( 4,109,442 base pairs) and megaplasmid ( 491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds ( carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:11次