| Structures of the HER2-HER3-NRG1 beta complex reveal a dynamic dimer interface | |
| Article | |
| 关键词: EPIDERMAL-GROWTH-FACTOR; EXTRACELLULAR REGION; CRYSTAL-STRUCTURE; CRYO-EM; KINASE DOMAIN; RECEPTOR; MUTATIONS; ERBB2; HER2; ACTIVATION; | |
| DOI : 10.1038/s41586-021-04084-z | |
| 来源: SCIE | |
【 摘 要 】
Human epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex(1-3) upon binding of growth factor neuregulin-1 beta (NRG1 beta). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1 beta-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface. We show that the dimerization arm of NRG1 beta-bound HER3 is unresolved because the apo HER2 monomer does not undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm-binding pocket. In a structure of the oncogenic extracellular domain mutant HER2(S310F), we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. Both HER2-HER3 and HER2(S310F)-HER3 retain the capacity to bind to the HER2-directed therapeutic antibody trastuzumab, but the mutant complex does not bind to pertuzumab. Our structure of the HER2(S310F)-HER3-NRG1 beta-trastuzumab Fab complex reveals that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, similar to oncogenic mutations, therapeutic agents exploit the intrinsic dynamics of the HER2-HER3 heterodimer. The unique features of a singly liganded HER2-HER3 heterodimer underscore the allosteric sensing of ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via a canonical active dimer interface.
【 授权许可】
Free