Heritage Science | |
Experimental research on the performance of a Novel Geo-filament anchor for an Earthen architectural site | |
Research | |
Guo Jian1  Zhang Weixi2  Lei Fan3  Wang Yulan4  | |
[1] Architecture College, Xi’an University of Architecture & Technology, 710055, Xi’an, China;Science College, Xi’an University of Architecture and Technology, 710055, Xi’an, China;Shaanxi Provincial Institute of Cultural Heritage, 710075, Xi’an, China;State Key Laboratory of Green Building in Western China, Xian University of Architecture & Technology, 710055, Xi’an, China;Architecture College, Xi’an University of Architecture & Technology, 710055, Xi’an, China; | |
关键词: Earthen architecture ruins; Small sliding mass; Geo-filament anchor (GFA); In-situ test; Design concept; | |
DOI : 10.1186/s40494-022-00842-y | |
received in 2022-08-06, accepted in 2022-11-30, 发布年份 2022 | |
来源: Springer | |
![]() |
【 摘 要 】
At present, most studies of anchorage techniques for earthen architecture ruins are conducted so as to improve the anchor force, however, the damage caused to the ruins by anchor reinforcement has not been fully considered in practice and no special anchor technique has been applied to reinforce the small sliding mass. This paper summarizes the application and R&D of anchor rod techniques as applied to the protection of the Gaochang Ruins, Turpan, in China. Based on the reinforcement of the small sliding mass of the earthen historical ramparts, a new type of Geotechnical Filament Anchor (GFA) is designed. By changing six parameters, including anchorage length (L), GF thickness (H), bore diameter (D), slurry strength (S), GFA surface state (R) and inclination Angle (A), the tensile strength, failure mode, load displacement (P-S) relationship and strain (ζ-L) distribution characteristics are studied, and corresponding analysis is performed on the test data and phenomena. (1) A formula for the design value of the anchorage force N is presented. (2) Combining the data on the strain distribution at the GF-slurry interface under the action of N, the shear stress distribution model of the anchorage system is obtained. (3) Taking into account the soil mechanical properties of the above-mentioned ruins, the shear stress diffusion coefficient (α) is conceptualized, the formula for the shear strength of the grouting material is obtained, and the allowable ranges of L, D, H, R, and S determined. A new design is proposed for the application of anchorage techniques to earthen ruins in the context of protection of cultural relics, which promotes the design and calculation method described in this paper.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305156005585ZK.pdf | 3976KB | ![]() |
|
Fig. 6 | 270KB | Image | ![]() |
MediaObjects/40644_2023_532_MOESM4_ESM.docx | 13KB | Other | ![]() |
40854_2022_419_Article_IEq4.gif | 1KB | Image | ![]() |
MediaObjects/12864_2023_9179_MOESM1_ESM.zip | 1642KB | Package | ![]() |
MediaObjects/41408_2023_798_MOESM1_ESM.pdf | 642KB | ![]() |
|
Fig. 5 | 92KB | Image | ![]() |
Fig. 4 | 568KB | Image | ![]() |
MediaObjects/41408_2023_800_MOESM1_ESM.pdf | 1956KB | ![]() |
|
Fig. 2 | 158KB | Image | ![]() |
Fig. 4 | 3716KB | Image | ![]() |
Fig. 1 | 156KB | Image | ![]() |
Fig. 2 | 128KB | Image | ![]() |
Fig. 6 | 108KB | Image | ![]() |
Fig. 4 | 2625KB | Image | ![]() |
Fig. 5 | 1072KB | Image | ![]() |
Fig. 3 | 1346KB | Image | ![]() |
40463_2023_625_Article_IEq2.gif | 1KB | Image | ![]() |
40463_2023_625_Article_IEq5.gif | 1KB | Image | ![]() |
Fig. 2 | 385KB | Image | ![]() |
40463_2023_625_Article_IEq11.gif | 1KB | Image | ![]() |
Fig. 3 | 93KB | Image | ![]() |
Fig. 2 | 47KB | Image | ![]() |
40854_2023_461_Article_IEq24.gif | 1KB | Image | ![]() |
Fig. 7 | 1938KB | Image | ![]() |
MediaObjects/13690_2023_1031_MOESM2_ESM.docx | 29KB | Other | ![]() |
Fig. 1 | 791KB | Image | ![]() |
40854_2023_461_Article_IEq30.gif | 1KB | Image | ![]() |
Fig. 1 | 96KB | Image | ![]() |
Fig. 1 | 143KB | Image | ![]() |
Fig. 2 | 456KB | Image | ![]() |
Fig. 2 | 242KB | Image | ![]() |
Fig. 7 | 719KB | Image | ![]() |
Fig. 7 | 1365KB | Image | ![]() |
Fig. 1 | 83KB | Image | ![]() |
Fig. 2 | 2168KB | Image | ![]() |
Fig. 5 | 723KB | Image | ![]() |
Fig. 2 | 700KB | Image | ![]() |
MediaObjects/12864_2023_9178_MOESM4_ESM.xlsx | 110KB | Other | ![]() |
MediaObjects/13063_2023_7143_MOESM3_ESM.docx | 21KB | Other | ![]() |
MediaObjects/13046_2023_2607_MOESM1_ESM.docx | 3891KB | Other | ![]() |
40854_2023_451_Article_IEq5.gif | 1KB | Image | ![]() |
Fig. 1 | 500KB | Image | ![]() |
MediaObjects/13068_2023_2275_MOESM8_ESM.tif | 181KB | Other | ![]() |
40249_2023_1060_Article_IEq1.gif | 1KB | Image | ![]() |
40249_2023_1060_Article_IEq2.gif | 1KB | Image | ![]() |
40249_2023_1060_Article_IEq3.gif | 1KB | Image | ![]() |
40249_2023_1060_Article_IEq4.gif | 1KB | Image | ![]() |
Fig. 1 | 1791KB | Image | ![]() |
Fig. 4 | 253KB | Image | ![]() |
Fig. 2 | 721KB | Image | ![]() |
【 图 表 】
Fig. 2
Fig. 4
Fig. 1
40249_2023_1060_Article_IEq4.gif
40249_2023_1060_Article_IEq3.gif
40249_2023_1060_Article_IEq2.gif
40249_2023_1060_Article_IEq1.gif
Fig. 1
40854_2023_451_Article_IEq5.gif
Fig. 2
Fig. 5
Fig. 2
Fig. 1
Fig. 7
Fig. 7
Fig. 2
Fig. 2
Fig. 1
Fig. 1
40854_2023_461_Article_IEq30.gif
Fig. 1
Fig. 7
40854_2023_461_Article_IEq24.gif
Fig. 2
Fig. 3
40463_2023_625_Article_IEq11.gif
Fig. 2
40463_2023_625_Article_IEq5.gif
40463_2023_625_Article_IEq2.gif
Fig. 3
Fig. 5
Fig. 4
Fig. 6
Fig. 2
Fig. 1
Fig. 4
Fig. 2
Fig. 4
Fig. 5
40854_2022_419_Article_IEq4.gif
Fig. 6
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]