期刊论文详细信息
International Journal of Coal Science & Technology
Classifying coke using CT scans and landmark multidimensional scaling
Research
Stephan Chalup1  Merrick Mahoney1  Bishnu P. Lamichhane1  Keith Nesbitt1  Fayeem Aziz1 
[1] School of Information and Physical Sciences, University of Newcastle, Callaghan, NSW, Australia;
关键词: Coke;    Microstructure;    Clustering;    Classification;    Computer tomography;   
DOI  :  10.1007/s40789-023-00570-z
 received in 2021-12-02, accepted in 2023-01-16,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

One factor that limits development of fundamental research on the influence of coke microstructure on its strength is the difficulty in quantifying the way that microstructure is both classified and distributed in three dimensions. To support such fundamental studies, this study evaluated a novel volumetric approach for classifying small (approx. 450 μm3) blocks of coke microstructure from 3D computed tomography scans. An automated process for classifying microstructure blocks was described. It is based on Landmark Multi-Dimensional Scaling and uses the Bhattacharyya metric and k-means clustering. The approach was evaluated using 27 coke samples across a range of coke with different properties and reliably identified 6 ordered class of coke microstructure based on the distribution of voxel intensities associated with structural density. The lower class (1–2) subblocks tend to be dominated by pores and thin walls. Typically, there is an increase in wall thickness and reduced pore sizes in the higher classes. Inert features are also likely to be seen in higher classes (5–6). In general, this approach provides an efficient automated means for identifying the 3D spatial distribution of microstructure in CT scans of coke.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305154408053ZK.pdf 3618KB PDF download
40517_2023_248_Article_IEq24.gif 1KB Image download
40517_2023_248_Article_IEq34.gif 1KB Image download
40854_2023_456_Article_IEq31.gif 1KB Image download
1076KB Image download
Fig. 6 2019KB Image download
2168KB Image download
40708_2023_184_Article_IEq4.gif 1KB Image download
Fig. 1 1163KB Image download
Fig. 1 154KB Image download
MediaObjects/13395_2023_313_MOESM1_ESM.pdf 43KB PDF download
Fig. 4 80KB Image download
MediaObjects/12951_2023_1799_MOESM1_ESM.docx 2710KB Other download
Fig. 2 1652KB Image download
12302_2023_718_Article_IEq20.gif 1KB Image download
Fig. 3 426KB Image download
Fig. 1 1691KB Image download
Fig. 5 458KB Image download
MediaObjects/40798_2023_559_MOESM3_ESM.pdf 108KB PDF download
【 图 表 】

Fig. 5

Fig. 1

Fig. 3

12302_2023_718_Article_IEq20.gif

Fig. 2

Fig. 4

Fig. 1

Fig. 1

40708_2023_184_Article_IEq4.gif

Fig. 6

40854_2023_456_Article_IEq31.gif

40517_2023_248_Article_IEq34.gif

40517_2023_248_Article_IEq24.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  文献评价指标  
  下载次数:12次 浏览次数:1次