| Microbiome | |
| Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease | |
| Research | |
| Xiaofang Wang1  Zhong Wei1  Yangchun Xu1  Rujiao Hou1  Qirong Shen1  Zhe Fan1  Keming Yang1  Chunxia Lu1  Jingxuan Li1  Shuo Wang1  Ville-Petri Friman2  | |
| [1] Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China;Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China;Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK;Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland; | |
| 关键词: Phage community ecology; Viral metagenomics; Rhizosphere virome; Trophic interactions; Bacterial wilt disease; Ralstonia solanacearum; | |
| DOI : 10.1186/s40168-023-01463-8 | |
| received in 2022-06-07, accepted in 2023-01-09, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundBacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosystems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. ‘primary phages’) and (2) that ‘secondary phages’ that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizosphere microbiomes by indirectly ‘helping’ the pathogen.ResultsUsing a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that exert strong top-down pathogen density control. Moreover, ‘secondary phages’ that targeted pathogen-inhibiting bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and ‘secondary phages’ were directly validated in separate greenhouse experiments where we causally show that phages can reduce soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating interference competition between pathogen-inhibiting bacteria and the pathogen.ConclusionsTogether, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of interference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields.9CDhWVdEuw3PsngifdxC8SVideo Abstract
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202305153868339ZK.pdf | 7151KB | ||
| 12888_2023_4583_Article_IEq1.gif | 1KB | Image | |
| Fig. 5 | 703KB | Image | |
| Fig. 1 | 895KB | Image | |
| Fig. 1 | 2175KB | Image | |
| Fig. 6 | 80KB | Image | |
| Fig. 5 | 312KB | Image | |
| MediaObjects/13750_2019_162_MOESM8_ESM.xlsx | 26KB | Other |
【 图 表 】
Fig. 5
Fig. 6
Fig. 1
Fig. 1
Fig. 5
12888_2023_4583_Article_IEq1.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
PDF