期刊论文详细信息
Journal of High Energy Physics
Beam functions for N-jettiness at N3LO in perturbative QCD
Regular Article - Theoretical Physics
Kirill Melnikov1  Daniel Baranowski2  Arnd Behring3  Lorenzo Tancredi4  Christopher Wever5 
[1] Institute for Theoretical Particle Physics, KIT, 76128, Karlsruhe, Germany;Institute for Theoretical Particle Physics, KIT, 76128, Karlsruhe, Germany;Physik Institut, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland;Institute for Theoretical Particle Physics, KIT, 76128, Karlsruhe, Germany;Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland;Physics Department, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany;Physics Department, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany;Corporate Sector Research and Advanced Engineering, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272, Renningen, Germany;
关键词: Higher-Order Perturbative Calculations;    Effective Field Theories of QCD;    Factorization;    Renormalization Group;   
DOI  :  10.1007/JHEP02(2023)073
 received in 2022-11-15, accepted in 2023-01-13,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

We present a calculation of all matching coefficients for N-jettiness beam functions at next-to-next-to-next-to-leading order (N3LO) in perturbative quantum chromodynamics (QCD). Our computation is performed starting from the respective collinear splitting kernels, which we integrate using the axial gauge. We use reverse unitarity to map the relevant phase-space integrals to loop integrals, which allows us to employ multi-loop techniques including integration-by-parts identities and differential equations. We find a canonical basis and use an algorithm to establish non-trivial partial fraction relations among the resulting master integrals, which allows us to reduce their number substantially. By use of regularity conditions, we express all necessary boundary constants in terms of an independent set, which we compute by direct integration of the corresponding integrals in the soft limit. In this way, we provide an entirely independent calculation of the matching coefficients which were previously computed in ref. [1].

【 授权许可】

Unknown   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305153152114ZK.pdf 814KB PDF download
Fig. 2 227KB Image download
Fig. 3 1268KB Image download
40854_2023_458_Article_IEq152.gif 1KB Image download
Fig. 6 255KB Image download
12938_2023_1070_Article_IEq19.gif 1KB Image download
Fig. 4 3008KB Image download
【 图 表 】

Fig. 4

12938_2023_1070_Article_IEq19.gif

Fig. 6

40854_2023_458_Article_IEq152.gif

Fig. 3

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  • [117]
  • [118]
  • [119]
  • [120]
  • [121]
  • [122]
  • [123]
  • [124]
  • [125]
  • [126]
  • [127]
  • [128]
  • [129]
  • [130]
  • [131]
  • [132]
  • [133]
  • [134]
  • [135]
  • [136]
  • [137]
  • [138]
  • [139]
  • [140]
  • [141]
  • [142]
  • [143]
  文献评价指标  
  下载次数:19次 浏览次数:1次